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Bioconvection in suspensions of oxytactic bacteria : 
linear theory 
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(Received 31 January 1995 and in revised form 12 January 1996) 

When a suspension of the bacterium Bacillus subtilis is placed in a chamber with its 
upper surface open to the atmosphere, complex bioconvection patterns form. These 
arise because the cells (a)  are denser than water, and (6) swim upwards on average so 
that the density of an initially uniform suspension becomes greater at the top than at 
the bottom. When the vertical density gradient becomes large enough an overturning 
instability occurs which evolves ultimately into the observed patterns. The cells swim 
upwards because they are oxytactic, i.e. they swim up gradients of oxygen, and they 
consume oxygen. These properties are incorporated in conservation equations for the 
cell and oxygen concentrations. which, for the pre-instability stage of the pattern 
formation process, have been solved in a previous paper (Hillesdon, Pedley & Kessler 
1995). In this paper we carry out a linear instability analysis of the steady-state cell and 
oxygen concentration distributions. There are intrinsic differences between the shallow- 
and deep-chamber cell concentration distributions, with the consequence that the 
instability is non-oscillatory in shallow chambers, but must be oscillatory in deep 
chambers whenever the critical wavenumber is non-zero. We investigate how the 
critical Rayleigh number for the suspension varies with the three independent 
parameters of the problem and discuss the most appropriate definition of the Rayleigh 
number. Several qualitative aspects of the solution of the linear instability problem 
agree with experimental observation. 

1. Introduction 

When a suspension of bacterial cells of the species Bacillus subtilis is placed in a 
chamber with its upper surface open to the atmosphere, complex bioconvection 
patterns are observed (Kessler 1989). These arise because the cells (a) are denser than 
water and (b) swim upwards on average so that the density of an initially uniform 
suspension becomes greater at the top than the bottom. When the vertical density 
gradient becomes large enough, an overturning instability occurs which evolves 
ultimately into the observed patterns. The cells swim upwards because they are 
oxytactic, i.e. they swim up gradients of oxygen (which are initially vertical); the 
oxygen gradients form because the cells consume oxygen, but the oxygen concentration 
(C) has the atmospheric value C, at the free surface. These properties are incorporated 
in conservation equations for C and the cell concentration ( N )  which, together with the 
Navier-Stokes and mass conservation equations of hydrodynamics, form a continuum 
model of the suspension. The solution of the cell and oxygen conservation equations 
in conditions when the fluid velocity is zero and N and C depend only on the vertical 
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coordinate and time, was given by Hillesdon, Pedley & Kessler (1995, referred to 
hereinafter as HPK). Here we analyse the linear instability of the steady-state solutions 
predicted in that paper. Where possible, analytical solutions are given, but in general 
the problem must be solved numerically. The aim of the work is to determine 
conditions at the onset of instability and their dependence on the model parameters. 

The suspension is taken to occupy a chamber of depth h. It is supposed that the 
steady-state cell and oxygen concentration distributions have developed from an initial 
condition in which the suspension was well-mixed, i.e. N and C were uniform. There 
is an upper free surface so that oxytaxis causes an unstable, densely packed cell layer 
to form at the top, beneath which the chamber is significantly depleted of cells. For 
sufficiently large depths, a stable zone of inactive cells arises near the bottom of the 
chamber; the effect of this on the overall stability of the suspension is of particular 
interest. 

1.2. The continuum model 
We suppose each cell to have volume v and density pc, such that pc > pw, where pw is 
the density of the watery medium in which the cells swim, and @,-p,)/p, + 1. This 
ensures that the cells are only slightly denser than water. The number of cells in a small 
volume 652, centred at a point X, is N(X, T)AO,  where X is measured relative to 
rectangular Cartesian axes OXYZ with the Z-axis vertically down, and T is the time. 
The suspension is assumed to be dilute so that the volume fraction Nu 4 1. Therefore 
the dynamic viscosity, ,LL, is assumed to be constant and equal in value to that of water. 
Changes in density, p, of an element of fluid due to cell diffusion, cell swimming and 
changes in pressure are assumed to be small and therefore the fluid is taken to be 
incompressible (the Boussinesq approximation). Hence 

v* u= 0, (1.1) 
where U is the fluid velocity. Neglecting all effects of the cells except their negative 
buoyancy, the momentum equation is 

where P,(X, T )  is the excess pressure above the hydrostatic pressure, g is the 
acceleration due to gravity and A is the Laplacian operator. These equations are the 
Navier-Stokes equations. 

The cell and oxygen conservation equations are based on the Keller-Segel (1971 a, 
b) equations, which have been successfully applied to a number of experimental 
situations. To account for the bulk fluid motion initiated when a convective instability 
forms, cell and oxygen advection terms, NU and CU respectively, are included in the 
conservation equations which are given by 

and 

- aN = -V."(U+ V ) - D . V N ] ,  
aT 

_ -  a' - -V-(CU-D,VC)-KN, 
ST 

where V is the average cell swimming velocity; D is the cell diffusivity tensor, 
consequent upon random cell swimming and therefore, like V ,  dependent on C (D is 
taken to be isotropic with magnitude D N ) ;  K is the rate at which an individual cell 
consumes oxygen; and D, is the oxygen diffusivity. Two effects have been neglected in 
equation (1.3) : 



Bioconvection in suspensions of oxytactic bacteria 225 

(i) gravitational sedimentation of cells, because the sedimentation speed of a 2 pm 
particle with Ap/p = 0.1 (- 0.2 pm s-l) is very much smaller than a typical cell 
swimming speed of 20 pm s-l (this will be inaccurate when the cells have become 
inactive, but is still unlikely to have much effect if the timescale for instability is 
sufficiently rapid); 

(ii) the influence of rotation or straining in the ambient flow on the orientation and 
hence swimming direction of a cell. The latter process (rheotaxis or gyrotaxis) has been 
carefully analysed in the context of algal suspensions (Pedley & Kessler 1990) but it is 
not clear how to take it into account in the bacterial case, since the oxygen distribution 
is also influenced by fluid rotation. 

In HPK we took the quantities arising in (1.3) and (1.4) to have the form 
V = a 5, W(H) ê (lVOl -so) H(l0Ol- F, , ) ,  

K = K,, W(O), 
D,  = constant, 

where H is a dimensionless measure of C: 

and W(H) is a saturating function with the characteristics W(O)+ 1 as C-cc and 
W(0) = 0 when C < Cmin. This function is introduced to represent the fact that the cells 
become inactive when the oxygen concentration falls below a small threshold value, 
Cmin. The quantities a, En, D,,, KO, q, are dimensional constants, L? is a unit vector 
parallel to the oxygen concentration gradient VH, and His  the Heaviside step function. 
A small cut-off oxygen concentration gradient, en, was included in the expression for 
V since it was thought to be unlikely that the cells could distinguish extremely small 
oxygen concentration gradients. Further discussion regarding these choices can be 
found in HPK. For the purposes of this paper we restrict attention to the case in which 
W(O) G H(O), the step function. It is shown in HPK that the steady-state cell and 
oxygen concentration distributions are qualitatively consistent with experimental 
observations for this choice. In addition we assume that en = 0, as non-zero values for 
the cut-off gradient were shown to have no qualitative effect on the steady-state cell and 
oxygen concentration distributions. These simplifications enabled HPK to find 
analytical steady-state solutions which considerably simplify the linear instability 
analysis. 

The horizontal boundaries are at 2 = 0, h, and the sidewalls are assumed to be 
sufficiently far away that the chamber effectively has infinite width. The boundary 
conditions on the oxygen concentration, C, are that it takes the given value C, at any 
interface with the air, and that there is zero flux at all other boundaries. The boundary 
condition on the cell concentration, N ,  will be taken to be the obvious one of zero flux, 
balancing chemotaxis and cell diffusion, at all boundaries of the suspension. Thus if k 
is a unit vector directed vertically upwards with respect to the chamber then 

8 = 1  at Z = 0 ,  (1.10) 
V H . k = O  at Z = h ,  (1.11) 

[N(U+ V ) - D . V N ] . k  = 0 at Z = 0,h.  (1.12) 
The initial, well-stirred condition, at T = 0, is that the oxygen and cell concentrations 
are uniform: 

O(Z. 0) = 1, N ( Z ,  0 )  = No. (1.13) 
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In addition, we assume that the timescale for which biological growth and decay are 
significant is much greater than that required for pattern formation, so that the total 
number of cells is conserved. Hence, for all T, 

l N ( Z ,  T)dZ = N,h. (1.14) 

There are also conditions on the fluid velocity, U, at the boundaries. As the top of 
the chamber is exposed to the atmosphere, it is assumed to be free of tangential stress; 
this implies 

(1.15) 

(Chandrasekhar 1961). At the bottom of the chamber there is a rigid boundary, at 
which a no-slip condition is imposed, so that 

U x k = O  at Z = h .  (1.16) 
The vertical component of U is also zero at the boundaries of the chamber, hence 

U . k = O  at Z=O,h. (1.17) 
Equation (1.9) gives the dimensionless form, 0, of the oxygen concentration. We now 

introduce dimensionless forms of the other variables, as follows : 

In dimensionless form, the Navier-Stokes equation is 

Sc-l - + ( u * V ) u  = -  (E ) Tnk + Au, (1.19) 

where Sc = v/D,, is the Schmidt number, v = p/pw being the kinematic viscosity of 
the fluid, and the dimensionless number analogous to the Rayleigh number in thermal 
convection problems is 

(1.20) 

This definition of Rayleigh number is different in two respects from that defined by 
Hill, Pedley & Kessler (1 989) for suspensions of gyrotactic micro-organisms. First, the 
latter contains a measure of the surface cell concentrations N ,  rather than initial 
concentration No, and secondly it includes the ratio of the chamber depth h to the scale 
height L ( =  D N / K ,  where V ,  is the cell swimming speed) of the undisturbed cell 
distribution. In our case we have no prior estimates of N ,  or L, and r arises naturally. 
However, it may turn out not to be the most appropriate measure of instability; this 
point is further discussed in $ 5 ,  with the aid of the numerical results to the full linear 
instability problem. 

In dimensionless form the incompressibility condition is 

v - u  = 0, 
and the cell and oxygen conservation equations are respectively 

an 
- = V - (H( 0) Vn - un - H(0) yn VO) 
at 

(1.21) 

given by 

(1.22) 
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Initial cell concentration 
Initial oxygen concentration 
Max. cell diffusivity 
Max. cell swimming speed 
Oxygen diffusivity 
Chemotaxis constant 
Max. oxygen consumption rate 
Cell density ratio 
Dynamic viscosity 
Cell volume 
Density of water 
Kinematic viscosity 

No z lo9 ~ m - ~  
C, z 1.5 x 10" molecules ~ m - ~  
D,,, x I .3 x 
K, x 2 x 
D, % 2.12 x 

K, z lo6 molecules cell-' s-l 

cm2 s-' 
cm s-l 

cm2 s-' 
u z min (O.lh,  0.05 cm) 

c., -PJlo,< = 0.1 
/ I  2 1 O F  g cm-ls-' 
I' 5 lo-'* cm3 

p, = 1.0 g cm-" 
11 x 10-2 cm' s-1 

TABLE 1. Estimates of typical dimensional parameters for a suspension of Bacillus subtilis. 

Diffusion parameter S =  16 
Depth parameter p = 7b' 

77 (deep chamber) 
15h (shallow chamber) 

Upswimming parameter 

Schmidt number Sc z 7700 
' Rayleigh number' r % I O V A  

TABLE 2. Estimates of the dimensionless parameters (h,  where it appears, is measured in mm). 

and -- c?H - v.(SVH-uH)-H(8)Spn,  (1.23) 
at 

where the dimensionless constants are 

(1.24) 

with AC = C,, - C,,,. We can regard ,8 as a depth parameter (it is a ratio of oxygen 
consumption rate to oxygen diffusion rate) and y as a measure of the strength of the 
oxytactic swimming relative to the random, diffusive swimming. (Note that the 
quantity /3 was called p2 by HPK.) The dimensionless boundary conditions are 

O ( 0 , t )  = 1, (1.25) 
V H * k = O  at ;= 1 ,  (1.26) 

(1.27) an 20 
a- c?Z 

H(0)-+  yH(H)n- = 0 at z = 0,1, 

?'(u - k )  
(? -2 = O  at z = O ,  

u x k = 0  at z = 1 ,  
u . k = O  at z = O , l .  

(1.28) 

(1.29) 
(1.30) 

Values of the physical quantities involved in the above model were estimated on the 
basis of Kessler's experiments, as reported by Kessler (1989) and Kessler et al. (1994, 
1995), and were discussed by HPK; they are reproduced in table 1. Table 2 gives 
estimates for the dimensionless parameters y ,  p, 8, Sc and r. 
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FIGURE 1 .  The curve in the (y,P)-plane that separates ‘deep’ and ‘shallow’ chamber behaviours 

based on the asymptotic steady-state solution (see inequality (1.41)). 

1.3. Steady-state solutions 
The analytical steady-state distributions are derived in HPK and we state here only 
the results relevant to this analysis. These are divided into two categories according 
to whether or not the oxygen concentration reaches its minimum value in some 
region of the chamber. In ‘shallow’ chambers it is assumed that 0 > 0 and (V01 > 0 for 
0 < z < 1 ; the steady-state solution is then given by 

Y cos (;A,) 1 (1.31) 

and 

where the constant A ,  is determined from the transcendental equation: 
tan (+A,) = yp/A,. (1.33) 

Note that the steady-state cell distribution depends only on the product yp, though its 
evolution depends on y and /3 separately (HPK). 

In ‘deep’ chambers, as seen experimentally, an inactive zone of cells forms below a 
critical distance, z = z, (say), where 0 = lV0l = 0 for z, < z < 1. For 0 < z < z, the 
steady-state solutions are given by 

n(z) = __ 4 sec2 {;A,( 1 - z)} ,  (1.32) 
2YP 

(1.34) 2 
Y 

0(z) = -ln{sec(;A,(z,-z))) 

and 

with the condition 
where 

n(z) = __ 4 sec2 {;A,(z, - z)} ,  (1.35) 
2YP 

24 
YP% 

z,  = __tan-’($), 

(1.36) 
(1.37) 

(1.38) 

(1.39) 

(1.40) 

$z = ey- 1, 

and ndz = a,. s:’ 
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FIGURE 2. (a) Typical cell concentration profiles in the boundary layer region for shallow (curve ii : 
y p  = 300) and deep (curve iii: y = 5 ,  p = 60, S = 1) chamber examples ( y p  1). (b)  The cell 
concentration profiles in the main body of the chamber for the examples shown in (a), together with 
a typical concentration profile for a shallow-chamber example where no cell boundary layer forms 
( y p  = 0.8; curve i). 

The fact that the cell diffusivity and cell swimming velocity are zero for z > z, means 
that an analytical solution for the cell concentration in z > 2, cannot be obtained. In 
that zone n is not identically equal to 1 because, at first, there is an oxygen gradient 
and the cells continue to swim up it until 0 falls to zero. Consequently, the value of 
a,(O < ac < 1) cannot be derived from the steady-state analysis and must instead be 
obtained from the numerical solution of the full initial value problem (see HPK). For 
this reason the deep-chamber steady-state cell distribution may depend separately on 
y and p, as well as 6. 

It can be shown that values of y and /3 that satisfy the inequality 

y/3 6 24 tan-' Q (1.41) 

correspond to shallow chambers; all other values correspond to deep chambers. To aid 
later explanations, a plot of the curve /3 = (2 /y)  q5 tan-' q5, henceforth referred to as the 
transition line, is shown in figure 1. In figure 2 are shown typical steady-state cell 
concentration distributions for both shallow and deep chambers. Note that in each 
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case (for yp  + 1) there is a 'boundary layer' of high cell concentration and 
concentration gradient near the upper surface of the chamber. Only for small depth 
(small yp) does this not occur. 

2. Formulation of the linear instability problem 
The instability analysis involves linearizing the governing equations for small 

perturbations from the steady state, solving the resulting equations for a perturbation 
with a single horizontal wavenumber k*, and calculating the corresponding temporal 
growth rate cr. In general, the eigenvalue cr is a complex number cr,+icri. If crT > 0 for 
any wavenumber k* then the steady state is unstable. The values of cry and ge will 
depend on the dimensionless parameters of the system: /3, 7,  8, Sc, T. In general, the 
system is stable (cr, < 0 for all k*) if I'is less than a critical value I', that depends on 
the other parameters, but unstable for I' > I',. We wish to compute I', for a range of 
values of the other parameters. 

It is also of interest to calculate crt for the marginal states in which cr, = 0. If 
cri = 0, the corresponding instability is stationary; if cr5 + 0 it is oscillatory. In some 
problems it is straightforward to show analytically that the instability must be 
stationary; see Pedley, Hill & Kessler (1988) for example. However, attempts at such 
analysis in our case have been unsuccessful, even for a shallow chamber. In view of the 
above, all the theory will be directed towards investigating conditions for marginal 
stability by setting cry = 0 at the start, and treating r and cri as the eigenvalues to be 
found. 

It is necessary to treat the shallow- and deep-chamber problems separately because 
the constraint B 3 0 must be imposed, so not all conceivable perturbations in the zone 
z > z,, where 8 = 0 in the steady state, are permitted. The shallow-chamber problem 
is dealt with first. 

2.1. Shall0 w chamber 
Here, the perturbations to the steady state are given by 

(2.1 a)  
(2.1 b) 
(2.1 c) 

(2.1 d)  

where 0 d e 4 1. The components of u; are (u l ,  ui ,  w;). On substitution of (2.1 a-d) into 
the governing equations, and elimination of p i ,  ui and u;, these equations can be 
expressed in terms of w;, P Z ~  and 8; only. These quantities are then decomposed into 
normal modes of the form, 

where the horizontal planform function, f ,  satisfies 

with 

A h f = - k 2 S ,  

and k is a constant dimensionless wavenumber, defined by 

k = k*h, 
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which corresponds to the dimensionless wavelength, 

The perturbation equations become 

___  4+y--+y->+ dOdN, dndC (dn -+-n- y do) W,+---C,, YV* 
dz dz dz dz dz 6 dz 6 

d2 N ,  
dz2 

(2.5a) 

subject to the boundary conditions 

and 

C, = 0 at z = 0, 

W , = O  at z = O , I ,  

= O  at  z =  0, 
dz 

dAi dC, 
dz dz 

- - 0  at z = 1 ,  

- = O  at z = O ,  d2 W, 
dz2 

dr 

(2.56) 

(2.5 c )  

(2 .6a)  
(2.6b) 

( 2 . 6 ~ )  

(2 .6d)  

(2.6e) 

It  should be noted that this shallow-chamber instability problem depends on y and 
/I only through the product y/l. This follows from (1.31)-(1.33) where we see that n(z) 
depends only on y/J (already noted) and dH/dz can be written as the product of ,8 and 
a function of z and yb. If, in (2.5)-(2.6), C, is replaced by pC,, then the dependence 
on yp becomes clear. 

The governing equations (2.5~-c) form an eighth-order system with coefficients that 
are functions of z ;  this system cannot, in general, be solved analytically. Only for very 
shallow chambers, where / J  + 1 .  has i t  been possible to find an analytical approximation 
to the solution (see 93.1). 

2.2. Deep chamber 
The deep-chamber stability problem is quite different from that of the shallow chamber 
because the steady state both may depend on y and /J separately and consists of an 
unstable region above a stable one (see figure 2b) .  At the onset of instability, the fluid 
motions initiated in the upper unstable layer are likely to penetrate into the lower, 
stable layer. The distance of penetration will depend on a variety of factors, but the 
position of the cut-off point, z, ,  and the measure of the cell stratification in the upper 
and lower layers will be of primary importance. 

Penetrative convection has been considered by a number of authors, for example 
Veronis (1963), mainly in a thermal convection context, and is usually defined by a 
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single set of equations valid over the entire domain of interest (though Stix 1970 and 
Zahn, Toomre & Latour 1982 considered multi-layer models). This however does not 
apply in the present case because of the cut-off for 0 d 0 of the cell diffusivity, cell 
swimming speed and oxygen consumption rate. In the lower region of inactive cells, we 
would expect 0 to remain zero and the cell concentration to change solely as a result 
of advection with the fluid motion driven from above. The position of the interface 
between active and inactive cells will also be deformed by the motion, and may be 
expressed in the form 

Henceforth we will denote the region 0 d z < z ,  as region 1, and zz < z d 1 as region 
2. Appropriate matching conditions must be imposed on n, 8 and u at the interface. 
Note that, while the steady-state solution in the region 0 < z d z, is known analytically 
(equations (1.34)-(1.36)), the steady-state values of n(z) for z > z, are known only 
numerically, at discrete values of z.  

z = zc+&(x, t )  = zz. (2.7) 

The cell conservation equation in region 2 is given by 

(advection only). The oxygen concentration equation is not required in region 2 
because 8 = 0. The Navier-Stokes equation is still given by (1.19). The perturbations 
in region 2 are denoted by the suffix 2, e.g. 

n(x, t )  = n(z) + eN,(z)f(x, y )  cut. 
Proceeding as in the shallow-chamber case we obtain the following fourth-order system 
of linearized equations : 

dn 
dz aN2+- W, = 0. 

(2 .9~)  

(2.9b) 

In the upper region, the governing equations have the same form as in the shallow- 
chamber case, equations (2.5). The surface boundary conditions in that case are also 
relevant for deep chambers. At the bottom of the chamber, all components of the fluid 
velocity are again zero, as is the cell flux. Thus the conditions on the perturbations at 
z = 1 are 

(2 .10~)  

and --=O dN, at z = l  (2.10 b) 
dz 

(2.IOb is not independent, following from (2.9b) and (2.10a), unless cr = 0). 

oxygen concentration and oxygen flux implies that, at the interface, 
It remains to specify the matching conditions at the interface. Continuity of the 

0, = 0 (2.11~) 

and 88,. 1 = 0, (2.11b) 
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FIGURE 3. Perturbation of the interface between active and inactive cells due to advection by the 
fluid motion. 

where .? is a unit vector normal to the interface, with unit vertical component and an 
O(E) horizontal component, and the suffix 1 refers to region 1. In Fourier mode 
representation we let 

where x is a constant, and the linearized forms of (2.11 a, h) become 

<(x, 0 = xf(x, Y) e"', 

c, = 0 (2.124 

and (2.12b) 

respectively. In fact condition (2.12b) is useful only for the determination of x. 
We also require a condition on Nl at the interface. This is obtained by integrating the 

rate of change in cell concentration over a rectangle of height I and of unit area whose 
centre coincides with a point on the interface, as depicted in figure 3. As l+O,  then 

i.e. there can be no finite cell accumulation in a region of zero thickness. With an/at 
given by (2.8) and (1.22), the above integral gives the condition 

(~.Vn-(un>.l-ynVe.f}, , ,e~-( - ~ n . i ) , - ~ ~ +  = 0. (2.13) 

Finally, continuity of the fluid velocity and its gradients across the interface implies 

(2.14) 

at z = z ,  + 5. Linearized and expressed in terms of a Fourier mode, conditions (2.13) 
and (2.14) become 

and di W, di W, 
dz' dzi 

for i =  1,2,3 - w,=w,,, 

(2.15) 

(2.16) 

respectively. 
In all cases considered, we shall specify the mode of any solution in terms of the 

number of times W(z) changes sign in the interval 0 < z < 1 : mode L corresponds to 
L-  1 sign changes. 
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3. Shallow-chamber methods and results 
In problems where there is only one physical mechanism for instability, the 

instability is normally stationary. (Oscillatory instability was predicted by Hill et al. 
1989 for an algal suspension in which two independent instability mechanisms could 
be identified.) Thus, in shallow chambers we assume that the marginal state will be 
stationary. In the absence of a formal proof, this assumption was verified for all 
parameter values of interest by solving numerically the linear instability problem for 
the eigenvalues gi and I-, given = 0. Note that N,, C, and W, must be treated as 
complex functions. It was indeed found that vi = 0 (and r > 0) in all of the shallow- 
chamber cases tested. Furthermore, the analytical solution with y/? < 1 (53.1) also 
gives CTE R. 

3. I .  Analytical solutions for  small depth 
In this section analytical solutions to equations (2 .5~-c)  are given for very small values 
of the depth parameter, yp. It is first necessary to expand the steady-state solutions 
(1.31)-(1.33) in powers of y/3. The expansion for A ,  in equation (1.33) is found to be 

and then (1.32) gives 
n(z) = 1 ++((1 - ~ ) ~ - i )  3 Y  /3+i{L-(l- 6 2 4  z ) 2 + + ( ~  - z ) 4 ) y 2 p 2 +  0 ( ~ 3 p 3 ) .  (3.2) 

Similarly the oxygen concentration gradient in the steady state, which also appears in 
the governing equations, is given by 

d6 
dz 
- = - p {( 1 - z )  + ;yp( 1 - 2) [( 1 - z)2 - I]) + o(y2p3). (3.3) 

If it is assumed that N ,  C and W (dropping the suffix 1 for the remainder of this 
section) can each be expressed as a series in powers of yP then it is possible to obtain 
the leading-order term (and higher orders if desired) in each of the series. For simplicity 
we also consider small wavenumbers, where k - (~/3)l’~, so that 

R2 = k 2 / y p  (3.4) 
is of order one; this corresponds to keeping the dimensional wavenumber fixed as 
h + 0. For a non-trivial solution, both the highest-order derivative and the right-hand 
side must be retained in equation ( 2 . 5 ~ )  at leading order. This equation will therefore 
reduce to 

which means in physical terms, and leaving aside the time dependence IT, that the 
viscous force, d4 W/dz4, balances the buoyancy force on the right-hand side. Without 
loss of generality, we also specify that 

and set C = /3C. There are then two possible leading-order balances in equations (2.5a) 
and (2.5 b), which potentially lead to non-trivial solutions, as follows : 

case (i) 

N = l  at z = O ,  (3.6) 
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case (ii)  

In case (i), the leading-order balance in the cell conservation equation is purely 
diffusive, and in the oxygen conservation equation there is a balance between diffusion 
and consumption of oxygen. In case (ii), the leading-order balance in the cell 
conservation equation is the same, but in the oxygen conservation equation, advection 
is important as well as the other terms. It turns out that case (i) leads to negative values 
of cr, i.e. stability, in all circumstances (see Hillesdon 1994), so we here give the analysis 
only for case (ii). During the analysis which follows, the function N,(z) is not to be 
confused with the initial cell concentration, JI. 

In this case we seek expansions of the form 

I =I1 1=0 f=n 
and 

x 

4) = c fl,G> (YP)'? m = 5 m (YP)' 
1=1 / - - I  

At leading order, the governing equations become 

subject to the boundary conditions 

C, = 0 at z = 0, 

and we arbitrarily set No = 1 at 2 = 0. The corresponding solution is 

4,G) = 1, 

2 
8!S 

C,)(z) = k(F' - 1)  - (207' - 7 0 P  + 6 3 ~ ~  - 13) - rl P, 

w,(z) = r-, Ez(2r4 - 5 9  + 377, 
where, for convenience, we have taken t = 1 -2. 

At the next order the governing equations are 

d4 W, d' W, 
d? dz' 
-- - ( 2 i 2  + ( T I  Sc-l) 7 + P ( r ,  ly + f,l A$, 

~ = (n,+P+ l )+y+(z-  1) w,, d2A( d2  C,l 
dz' dz 

d2  C 

(3.7a) 

(3.7b) 

(3.7c) 
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d2 W, - dN, dCo 
dz dz w, = 0, c, = 0, - dz2 -0 ,  --+1--=0 at Z = O ,  

The solution of the problem at this order gives the functions N,, W, and C1, and in 
addition determines v1 to be 

v1 = k2 --T-l - 1 . - (5 i6  ) 
The fact that W, has no internal zero shows that the vertical structure is that of a 

single bioconvection cell, so the disturbance is of mode 1. We see from (3.8) that the 
system is unstable to small-wavenumber disturbances if I--' > 576. These results 
demonstrate that the instability is non-oscillatory. Marginal stability (v = 0) occurs 
when 

576 
T(f) = --+ O(1). 

YP (3.9) 

At the next order, we find that the second term in the series for v is given by 

v2 = ~{(1+f2)(2v1+L2)+v;)+-- I + -  r-,ff2+-r0f2 5 
3.8! 50 ( i) 4.6! 

236Lz + g1(212 + 17/&) + 324 5.8! 

( i) 413'33.13).  (3.10) 
-180.307 I + -  + 

The correction Tkto the value (3.9) of r (L)  for marginal stability can now be found in 
terms of C, and k2 using (3.10). These analytical results can be used to check the values 
of T(k) found by numerical solution for vV = 0. 

3.2. Numerical results and discussion 
For fixed values of P,y,S and k the eighth-order system of equations (2 .5~-c)  is 
augmented by the further equation 

- _  - 0  d T  
dz 

(and dai/dz = 0 in cases where gi = 0 is not assumed), and the values of T(and ai) are 
sought for which the system has a non-trivial neutral solution with rr = 0. The 
ordinary differential equations were discretized using either a second-order centred 
Euler or box scheme (Keller 1974) or a fourth-order Runge-Kutta scheme (Cash & 
Moore 1980). The discretization meshes (clustered near the upper surface in cases for 
which the basic state has a thin cell boundary layer) were chosen so that the two 
methods gave the same results. Accuracy was enhanced using Richardson extra- 
polation ; the difference equations were solved by Newton's method. Initial guesses for 
the functions q ( z ) ,  N,(z), C,(z), and the constants T (and vi) were obtained from 
analytical solutions, if available, or from previous computations at neighbouring 
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FIGURE 4. Example with S = 1, yp = 0.05. (a) Comparison between numerical and analytical 
solutions for T(k). (b) The T(k) curves for the mode 1 4  solutions. 

parameter values, or roughly sinusoidal variations of the functions were chosen. Note 
that different initial guesses for r c a n  cause convergence to different modes of solution. 
Full details of the numerical method can be found in Hillesdon (1994). 

The objective is to plot the neutral curve T(k), and compute its minimum, giving 
critical values of Rayleigh number and wavenumber, r, and k,, for any values of the 
governing parameters we might choose. These are 6 (oxygen versus cell diffusion), /3 
(oxygen consumption versus oxygen diffusion) and y (directed versus random cell 
swimming), as defined in (1.24); in shallow chambers the last two can be combined into 
the product yp. It may be helpful to think of /3 (or yp)  as a depth parameter. Since there 
is great uncertainty about the value of the parameters, it is important to consider a 
range of values rather than limit ourselves to particular estimates such as those given 
in table 2. 

To illustrate the comparison between the analytical and the numerical solution for 
y p  4 1,  we plot in figure 4(a) the neutral curve T(k) for the case y/3 = 0.05, S = 1 (mode 
1 solution). It can be seen that the two curves agree extremely well for k d 0.06. As 
k 4 0, the numerical results give r+ 1.17 x lo4, while the analytical approximation is 
T-t 576/y/3 = 1.15 x 10'; the agreement improves as y p  is further reduced. The critical 
values of the Rayleigh number and wavenumber are r, = 1.02 x lo4 and k ,  = 1.37 (as 
usual, if the latter has error c, the former has error only O(2)). The critical 
wavenumber k,  gives an estimate for the dimensionless wavelength A, = 271/k, of the 
first patterns to be observed in an experiment in which r is slowly raised above r,. 
However, the most unstable disturbance for r> r, in general has a different 
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FIGURE 5. Neutral curves T(k)  calculated for a variety of shallow-chamber examples; S = 1 unless 
otherwise stated. 

8 YP rc kc 
1 0.05 1.02 x 104 1.37 
1 1 625 1.58 
1 10 200 1.90 
1 50 328 1.94 
1 100 522 1.91 

10 10 24 1 1.29 
TABLE 3. Values of r,, k ,  for various shallow-chamber examples. 

wavelength; computations of rr for a given r > rc give a maximum when k = k ,  
which is somewhat greater than k,. 

To investigate other modes of disturbance, the problem was solved with a variety of 
initial estimates for the eigenvalue T(k)  and the solution converged to different 
eigenfunctions. Figure 4(b) shows the neutral curves for the mode 1,2,3 and 4 
solutions. Clearly the mode 1 solution is the most unstable; this is true for all shallow- 
chamber examples considered. 

We now present the results for a variety of shallow-chamber examples, covering the 
whole range of steady-state density profiles, from nearly uniform (yp = 0.05) to 
densely packed at the top (yp  = 300; figure 2, curves ii). It should be recalled that the 
steady-state profiles (for a shallow chamber) are independent of S, varying only with 
yp. Six sets of results for r, and k, are given in table 3, while the neutral curves T(k)  
are plotted for four of these cases in figure 5.  

Two features of the results are of interest. First we see that the neutral curves for 
different values of S diverge as the wavenumber increases, despite the fact that the 
steady states are the same. The value of r, for a given k,  is larger for 6 = 10 than for 
S =  1, i.e. an increase in S is apparently stabilizing. However, interpretation of this 
result is not straightforward. The increase in the value of S can be viewed either as an 
increase in D, with D,, fixed, or as a decrease in D,, with D, fixed. In the former case, 
a tenfold increase in D, means that the value of a V,, KO N,h2/D,, AC would also have 
to increase tenfold to keep yp fixed (see (1.24)). If this increase is attributed to an 
increase in the depth, h, then since T cc h3 the value of T will be greater by a factor of 
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FIGURE 6. ( u )  Computed values of $,, and (b)  corresponding values of k , ,  as the value of y,8 is 

varied for given values of 8. In (u ) ,  each curve has its minimum at y,8 = 9.9. 

lo”/;’, more than the computed increase in I?. In that sense the increase in 6 can be 
thought of as destabilizing. The opposite conclusion is reached if the increase in S 
results from a decrease in D,\,,. 

The second and probably more important comparison is between cases with different 
steady-state cell and oxygen distributions (i.e. different yp) and, for convenience, the 
same value of S ( =  1). We would expect that the steeper free-surface density gradients, 
for larger values of yp, should be more unstable. However, we see from table 3 that r, 
at first falls as ypis increased, as expected, but then rises again; also k,. has a maximum 
value, though apparently not at the same value of y/5’ as the minimum in r,. To 
examine this behaviour more fully, the values of and k,, are plotted against y/I for 
different values of S in figures 6 ( u )  and 6(b) .  For each value of S, the overall minimum 
value of r,, occurs when y/ j  2 9.9. 

These findings suggest that r may not be the most appropriate measure of the ratio 
between the buoyancy forces that drive the bioconvection and the viscous forces that 
inhibit it. In the additional light of the deep-chamber numerical results (see $4) we 
show in 6 5  that more intuitively reasonable behaviour can be obtained by a different 
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choice of scaling for the Rayleigh number when 
(1.20), arose naturally from the non-dimensionalization of the problem. 

% 1, although r, as defined in 

4. Deep-chamber analysis and numerical results 
4.1. Characteristics of deep-chamber instability 

The following argument indicates that in deep chambers the marginal state must be 
oscillatory (ui $. 0) whenever the corresponding wavenumber is also non-zero. The 
argument is based on the fact that the steady-state cell concentration gradient, dnldz, 
is non-zero for z > z,. If we assume a stationary marginal state, so that ui = 0, then 
equation (2.9 b) for z ,  < z < 1 gives W, = 0, which suggests that there is no penetrative 
convection, and then ( 2 . 9 ~ )  gives N, = 0 as long as k2 =l= 0. Moreover, continuity of the 
velocity and stress at the interface then requires that W, and its first three derivatives 
are continuous, i.e. zero, at the interface. Together with (2.12a), (2.15) (which reduces 
to dNl/dz = yn(z,-)dC,/dz), and the four conditions at z = 0 from (2.6a-c, e), this 
means that the eighth-order homogeneous system of differential equations (2.5) in the 
unstable region, 0 < z < z,, must satisfy 10 independent boundary conditions and 
there is only one adjustable constant, r. Hence the solution is identically zero. For a 
non-trivial solution, therefore, we must have ui $. 0 or k2 = 0. 

Oscillatory instabilities generally occur when there are two competing physical 
mechanisms at work, one stabilizing and one destabilizing, as for example in double- 
diffusive convection. Double-diffusive instabilities do not occur in our system, despite 
the fact that there are two diffusing species (oxygen and cells), because only one of them 
contributes to the fluid density. In our case the destabilizing mechanism comes from 
the unstable density stratification in the upper region while the stabilizing one must 
arise from the stable density stratification in the lower region. A small disturbance of 
finite wavelength applied to the lower region alone would lead to oscillatory internal 
gravity waves, with a frequency determined by a combination of the density jump 
across z = z ,  and the density gradient below it. 

4.2. Numerical considerations 
Here the chamber has to be split into two zones and the solutions matched at the 
interface z = z,. The functions y(z), Cj(z)  and y(z) ( j  = 1,2) have to be split into 
real and imaginary parts, and the resulting systems of equations rewritten as sets of 
first-order equations. In the upper zone the system has order 16; in the lower zone it 
has order 8. A complication in the lower zone is that the basic cell concentration 
gradient dn/dz is known only numerically, at particular values of z ,  from the initial 
value solution of HPK. Therefore its values at the chosen mesh points had to be 
interpolated (using cubic splines). In this case the Euler method was very much easier 
to program than the Runge-Kutta method and was therefore used throughout, with 
a suitably large number of mesh points, suitably clustered near the free surface. 
Because of the theorem proved in $4.1, we made no apriori assumption about the value 
of ui; like r, this quantity was computed as an eigenvalue. In all deep-chamber cases, 
for every non-zero value of k the corresponding value of ui was also non-zero. In many 
cases, however, the corresponding value of r decreased as k was decreased and it was 
inferred that k,  would be zero, the corresponding values of I-, and vie (apparently zero) 
being obtained by extrapolation (see figure 10 below; the numerical problem became 
singular in the limit k + 0, ui + 0). However, there was a range of parameters for which 
k, (and hence criC) was indeed non-zero. Complete details of the numerical method are 
again given in Hillesdon (1994). 
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4.3. Results and discussion 
As for a shallow chamber, the values of the parameters p, y and S are independently 
varied and the corresponding values for r, and k,  are determined. It will be of 
particular interest to examine cases in which the values of y and /3 are close to the 
transition curve (1.41) between shallow- and deep-chamber examples, since one might 
expect consistency as that curve is approached from either side. Each deep case requires 
numerical solution of the initial value problem, so that the values of a,, z, and the cell 
concentration below z = z ,  are known in the steady state. 

Figure 7 ( a )  shows how the value of r, varies when S, y and p are independently 
varied, the other parameters being fixed at the quoted values. Figure 7(b) shows the 
corresponding values of k,  for these cases. The vertical dashed lines indicate where the 
parameter values coincide with the shallow/deep chamber transition. 

Several aspects of the results are of interest. First, there appears to be a slight 
discrepancy between the computed values of r,, and a substantial discrepancy for k,., 
as the transition is approached from the shallow- or deep-chamber areas of parameter 
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FIGURE 8. Illustration of the different characteristics of the (a)  N,,  (b) C,, (c)  perturbation profiles 
corresponding to the values of r, and k,  for deep (y = 5.8, -) and shallow (y = 5.952, -0-) 
chamber cases close to the transition line (6 = 1, /3 = 10). 

space. A possible source of error lies in the fact that the shallow-chamber equations are 
not uniformly valid as the transition is approached, because the perturbation must be 
taken smaller and smaller to prevent the occurrence of negative values of 8, since at 
transition the steady-state value of 0 is zero at z = 1. To illustrate this point we 
compare the real parts of the N ,  C, Wsolutions for a deep-chamber example near to the 
transition curve (6 = 1, y = 5.8, /3 = 10) with the N ,  C, W solutions for a suitable 
shallow-chamber case that also lies very close to this curve (6 = 1, y = 5.952, p = 10). 
The comparison is shown in figure 8. Apart from the discontinuous jump in the N 
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FIGURE 9. Steady-state dimensionless (a)  oxygen and (b, c) cell concentration profiles corresponding 
to 6 = 1, y = 5 ,  ,b' = 7.2296, 10, 20, 40, 60; (b) and (c) show the cell concentration profiles in the main 
body of the chamber and in the cell boundary layer respectively. 

distribution in the y = 5.8 case, the most striking difference lies, as expected, in the C 
distributions. Although the zero-cell-flux condition at z = 1 is satisfied for the case with 
y = 5.952, the constraint on the sign of 6' will not be. As a result, there is a noticeable 
difference between the N and W profiles, and hence the values of r, and k,. The above 
comments, together with the large jump in the value of k,  at transition (figure 7b), 
suggest that the limit z ,  --f 1 is singular and requires additional analysis in the future. 

Figure 7 ( 6 )  shows that there is rather a limited range of deep-chamber parameter 
values for which the critical wavenumber is non-zero and the instability is necessarily 
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oscillatory. Indeed, the numerical results for giC show that the instability becomes non- 
oscillatory again (giC = 0) when k,  goes to zero, although that is not required by the 
result proved in $4.1. For each example considered, the value of q attains a maximum 
at a particular wavenumber k,  not usually equal to k,. As the transition is approached 
from the deep-chamber region, z,+ 1 and we find that the maximum value of vi(k)  
decreases to zero. This is to be expected because the depth of the stable region becomes 
significantly smaller than that of the unstable region and so the oscillations induced by 
the interaction of these regions will also diminish. 

Another important feature of the results that is not seen in figure 7 is that for each 
set of parameters (P,y,8) the mode of disturbance depends significantly on the 
wavenumber k. In all of the cases considered, as the wavenumber of the disturbance 
increases then so too does the mode of the vertical velocity field W(z). How often the 
mode increases depends on several factors, but it appears that the extent of the cell 
boundary layer and the position of the cut-off point are the most important (see 
below). 

The effect of independent changes in the parameter values for the above examples 
is discussed in greater detail in the following sections. 

4.3.1. Vary p; S =  1, y = 5 
The results for deep chambers in figure 7 indicate that as the value of ,I3 increases 

(oxygen consumption increasing relative to oxygen diffusion, equivalent to a depth 
increase) the critical Rayleigh number, r,, also increases. In addition, the cor- 
responding wavenumber k,  is non-zero in a small region close to the transition line 
given by (1.41), but rapidly diminishes to zero as ,5 is increased. The steady-state cell 
concentration profiles for selected examples are shown in figure 9. 

Figure 10(a) shows the curve T(k) for the shallow- and deep-chamber cases 
corresponding to /3 = 7.2296 and p = 7.5 respectively. The curves are almost identical 
except for wavenumbers smaller than 2, where the values of r differ significantly. This 
may be because for this range of values the corresponding dimensional wavelength, A*, 
becomes relatively high compared with the depth of the chamber h, so the disturbances 
will penetrate to the bottom and the presence of the stable region will have a greater 
effect. 

For cases where /3 2 10, the curves T(k) are shown in figure lo@). The qualitative 
behaviour is the same in each case: as k increases from zero the Rayleigh number I' 
increases steadily upwards from its minimum value. As p increases so too does the 
value of re, in rough proportion to /3312 (note that p cc h2 and roc h3). A different 
possible scaling for r is discussed in $ 5 .  

The dependence of vi on k for p =  10, 20, 40, 60 is shown in figure lO(c). The 
frequency of oscillation corresponding to a particular wavenumber is greatest in the 

= 60 case, for k > 2. This behaviour is presumably related to the change with p of 
the stable part of the steady-state density distribution (figure 9). 

For /3 = 10,20 the motion of the fluid at the critical Rayleigh number consists of a 
single convection cell. Thus the motion initiated in the upper unstable zone penetrates 
through the stable layer to reach the lower boundary. In such cases we would expect 
that, as the convection develops, the whole chamber will become involved in the 
motion-and the stable zone will lose its identity. This has been observed 
experimentally. The observed initial motion presumably has a wavenumber equal to 
the most unstable wavenumber, k,, corresponding to the actual, supercritical value of 
I'. Even when k,  = 0 we would not expect k ,  to be zero (cf. Hill et al. 1989), except 
when I' is only infinitesimally greater than I',. In figure 11 (a)  we plot the streamlines 
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FIGURE 10. (a) Comparison of the curves T(k) for the shallow-chamber case where p = 7.2296 and 
the deep-chamber case where p = 7.5. (b) The curves T(k)  and (c) cr,(k) corresponding to different 
values of p. For each figure, S = 1, y = 5.  

corresponding to r = r,, k = 0.1, to give some idea of the flow patterns at the onset 
of instability when p = 20. 

The distance of penetration into the stable region appears to depend on the value of 
p. For high enough values of p the fluid motion at the critical Rayleigh number is of 
mode 2, i.e. consists of two convection cells. Viscous forces exerted by the motion in 
the upper unstable region drive counter-rotating cells within the lower stable region, 
and the primary cells penetrate only part way into the stable region. The streamlines 
for /3 = 60, r = r, and k = 0.1 are shown in figure 11 (6). The horizontal dashed line 
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FIGURE 1 1 .  Streamlines at the onset of instability for the cases 6 = 1 ,  y = 5, ,8 = 20,60. In (a) ,8 = 
20, r = 729 z r, and k = 0.1, and in (b) B = 60, r = 3756 = r, and k = 0.1. The horizontal dashed 
lines show the position of the steady-state cut-off point z = z,. Values of the stream function, $, are 
given in the figure legend. 

corresponds to the position of the critical cut-off point z = zc;  the upper cells penetrate 
a dimensionless distance of approximately 0.08 beyond z = z,. The distance of 
penetration decreases as ,8 increases. From an experimental point of view, in this 
situation the stable region could still be visibly distinguished from the unstable region 
above, and this type of behaviour has also been observed experimentally for sufficiently 
deep chambers. 
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FIGURE 12. Steady-state dimensionless (a) oxygen and (b, c) cell concentration distributions for the 
cases where S = 1 ,  /I = 10 and y = I ,  2, 4, 5 ,  5.952. The cell concentration profiles in the main body 
of the chamber and in the cell boundary layer are shown in (6) and (c) respectively. 

4.3.2. Vary y ;  S = 1, /l= 10 
Figure 7(a) shows that for y corresponding to a deep chamber (y d 5.8 with 6 = 1 

and /l = 10) an increase in y (directed cell swimming increasing relative to diffusive 
swimming) leads initially to a fall in r,, which reaches a minimum of z 300 when 
y z 4. Qualitatively, this behaviour is consistent with the change in cell distribution 
associated with increased values of y (see figure 12) as the most unstable deep-layer 
distributions are expected to occur when the density gradient is steepest. However, for 
y > 4 the value of r,, increases with y ,  This behaviour is analogous to that observed 
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FIGURE 13. (a) Comparison of the curves r ( k )  for the shallow-chamber case where y = 5.952 and the 
deep-chamber case where y = 5.8. (b) The curves T(k) and (c) r , (k)  corresponding to different values 
of y. For each figure, S = 1, /3 = 10. 

in the shallow-chamber case as yP is increased; as in that case it may be attributable 
to an inappropriate definition of T (see $5) .  

As when P is varied, the solutions give non-zero values of k,  (and a,) only when y 
takes a value close to the deepshallow transition. Figure 13(a) shows the curves T(k) 
for the cases y = 5.8 and y = 5.952, so that the difference in behaviour between the 
deep and shallow chambers can be compared. Again there is close agreement between 
the two values of Tfor wavenumbers higher than a particular value, which for this case 
is k % 3.  Although not graphically obvious, there is in fact a minimum at k z 1.1 for 
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FIGURE 14. Steady-state dimensionless (a) oxygen and (b, c) cell concentration distributions for the 
cases where y = 5 ,  p = 20, and 8 = 114, 112, 1, 20. The cell concentration profiles in the main body 
of the chamber and in the cell boundary layer are shown in (b) and (c)  respectively. 

the y = 5.8 case. The curves T(k)  for y = 1, 2, 3, 4, 5 are shown in figure 13(b). Note 
that the variation in y appears to have a more significant effect on the gradient of the 
curve T(k) than on the initial point of the curve, unlike the variation in /3 for which the 
converse is true. The curves v i (k)  for these cases are shown in figure 13(c); as z ,  --f 1 the 
curves broaden out and the peak value falls. This is because the unstable region is 
significantly deeper than the stable region below and, therefore, results will become 
more like those obtained in the shallow-chamber case. 

For all of the values of y considered the most unstable mode of disturbance 
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corresponds to a single convection cell occupying the entire chamber. When the 
position of the critical cut-off point is close to the upper surface, the extent of the cell 
boundary layer is significantly reduced (since y is small), as shown in figure 12(c) (to 
be compared with figure 9c). Therefore the energy available to produce a counter- 
rotating cell, which depends on the density gradient above the cut-off point, will 
presumably be much lower. In addition, the cell concentration at the critical cut-off 
point is continuous and the discontinuity in cell concentration gradient is significantly 
reduced for such cases. Therefore the stabilizing effect on any instability initiated in the 
upper region will be low and the most dominant disturbance is of mode 1. 

4.3.3. Vary 6 ;  y = 5 ,  p = 20 
Perhaps the most interesting and complex behaviour occurs as the value of 6 is 

independently varied. In a deep chamber, unlike a shallow one, the steady-state cell and 
oxygen concentration distributions depend on 6. These distributions are shown for 
various values of 6 in figure 14(a-c). As the value of 6 increases (cells diffusing less 
vigorously than oxygen), the surface layer becomes less packed with cells and the lower 
stable region reduces slightly in depth but increases in average cell concentration so 
that the density discontinuity increases; for S = 20 the cell concentration below the cut- 
off point is close to the initial cell concentration, n = 1. The curves T(k) corresponding 
to these cases are shown in figures 15(a) and I5(b). The qualitative and quantitative 
behaviour of these curves changes significantly with the value of 6; for small enough 
values of 6 the existence of a non-zero critical wavenumber is clearly evident. The 
curves ai(k) for 6 = 1 /4,1/2,1,20 are shown in figure 15 (c). It can be seen that a lower 
maximum value of ai(k) (dimensionless frequency) is associated with a larger value of 
6 and hence with a greater discontinuity in the cell concentration at the interface. This 
is rather surprising and indicates that other factors affect the magnitude of a@). 
Moreover, additional results show that cm = max[ai(k)] (say) starts to fall when S 
decreases below 0.3; these are cases for which the cell concentration at z = z ,  is 
continuous, so other factors must determine the value of am in this instance. 

For convenience, we describe how the results change as S is decreased from 20, 
above which they are virtually independent of 6. Figure 7(a )  shows that as 6 is 
reduced from 20 to 0.67, the critical Rayleigh number increases. On the other hand, the 
steady-state cell concentration profile for these cases looks more unstable as 6 is 
decreased, again suggesting that a more appropriate definition of Rayleigh number is 
required. In this range of values, the critical Rayleigh number occurs at k = 0 (where 
ai = 0) and the disturbance is mode 1, except between 6 = 0.8 and 6 = 0.67, where it 
is mode 2. When S is reduced below 0.67, the value of T, starts to decrease again, the 
value of k ,  becomes non-zero (and ai + 0), and the corresponding instability remains 
initially at mode 2. The critical wavenumber increases rapidly to attain its maximum 
value, k,  z 2.7, when S = 0.3; the mode of the critical solution returns to 1 at this value 
of 6. It is interesting to note that in this case (6 = 0.3), unlike the others considered so 
far, the mode of the motion does not initially increase with k ;  for k = 0.1 to k = 1.8 
the solution is mode 2, for 1.8 < k d 3.4 the mode falls to 1, and for k > 3.4 the mode 
of the solution increases again. As 6 is further reduced, the range of wavenumbers 
corresponding to mode 1 solutions increases, to the extent that the behaviour observed 
in the S =  0.3 case no longer occurs when 6= 0.2. Instead the mode increases 
intermittently from 1 as k is increased - as in the cases where y and /3 are independently 
varied. 

The change in form of the steady-state cell concentration profile as 6 changes value 
is presumably responsible for the wide range in behaviour of the solutions. The cell 
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FICUR~ 15. (a) Comparison of the T(k) curves over the range, 0 < k < 3, for different values of 8. (b) 
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each figure. y = 5, /I = 20. 

profiles shown in figure 14(6) show that the greater the discontinuity in the steady-state 
cell concentration gradient dnldz, the more likely is the mode of the solution to be 
greater than 1. A dependency on the gradient is not surprising because equation (2.9b) 
shows that the W(z) profile in region 2 is strongly influenced by dnldz. The hypothesis 
is certainly consistent with the examples considered so far. When S = 20, the jump in 
the value of dn/dz is quite small ( z  1.14 x lo-’) and the mode of the W(z) profile at 
r,. is 1 ,  whereas when S = 0.5 the jump in value is significantly higher ( z  1.34) and the 
critical solution is mode 2. When 6 = 0.2, the magnitude of the discontinuity in dn/dz 
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FIGURE 16. Streamlines at the onset of instability for the cases S = 0.2, 0.5, y = 5, /3 = 20. In (a) 
S = 0.2, r = 418 z r, and k z 2.53, and in (b)  S = 0.5, r = 723 z r, and k z 1.71. The horizontal 
dashed lines show the position of the steady-state cut-off point z = z,. Values of the stream function, 
$, are given in the figure legend. 

is smaller than that in the 6 = 0.5 case and the solution is again of mode 1. To highlight 
this difference in behaviour the streamlines for the cases with 6 = 0.2 and 6 = 0.5 are 
shown in figures 16(a) and 16(b) respectively. 

Another important feature of the results is the behaviour of the critical wavenumber. 
In particular, what is the mechanism by which a zero critical wavenumber is selected 
in some cases but not in others? To attempt an answer it is first useful to consider again 
the shallow-chamber problem, in which non-zero critical wavenumbers were obtained 
in all cases. We investigate whether this result would still be true if the form of the 
governing equations were altered. In particular, we look at the effects on the value of 
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k ,  caused by removing (i) the term associated with oxygen consumption by the cells, 
and (ii) the terms associated with cell swimming. In each case the steady-state cell and 
oxygen concentration profiles obtained from the solution of the full problem are used. 
For (i), the neutral curves change considerably; the critical wavenumber falls in each 
case considered and the rate of change of r as k+O is significantly reduced. This 
behaviour closely resembles that obtained in the full solution of the deep-chamber 
problem for examples close to the transition line. In (ii), the shallow-chamber problem 
gives k ,  = 0 in all cases considered (as expected from the similarity to thermal 
convection with insulating boundaries : Chapman & Proctor 1980). Therefore, it 
appears plausible that in the deep-chamber linear instability problem, the loss of the 
consumption and swimming terms in the governing equations for the stable region 
(where 0 = 0) may contribute to the observed behaviour. 

The reasons why the critical wavenumber suddenly becomes non-zero when 6 < 0.67 
are not obvious. The result may be related to the shallow-chamber results in which k,  
falls as S rises (table 3 and figure 5),  though in that case k ,  is never zero. 

The dependence of the critical wavenumber on the precise form of the governing 
equations and boundary conditions has become apparent in other pattern formation 
problems. In a model developed by Childress, Levandowsky & Spiegel (1975) for 
bioconvection in suspensions of the ciliated protozoan, Tetrahymena pyriformis, zero 
critical wavenumbers were predicted for all parameter values. However, in a later 
model by Hill et al. (1989), for bioconvection in suspensions of algae, the governing 
equations were similar to those in the Childress case but with additional terms to 
account for gyrotaxis. This problem typically gives non-zero critical wavenumbers. 

5. Further discussion : alternative definitions of the Rayleigh number 
The solution of the linear instability problem for both shallow and deep chambers 

shows that in cases where a significant cell boundary layer forms in the steady state 
( y p  >> 1) the computed value of I-,, which should be an indicator of the relative 
instability of a particular suspension, is not well correlated with the density distribution 
(defined by the values of p, y ,  8). We believe that the problem lies with the definition 
(1.20) of the Rayleigh number, F, proportional to No h3, where No is the mean (initial) 
cell concentration and h is the chamber depth. In boundary layer cases a more 
appropriate definition would replace No by Iv,, a measure of the concentration 
difference across the layer which we can take to be the concentration at the upper 
surface, and replace h by L, a scale for the layer thickness. Other authors in this field 
have proposed similar alternative definitions, e.g. Hill et al. (1989), and Childress et al. 
(1975). The problem therefore is to determine an appropriate sub-layer definition, 
given the form of the steady-state cell distribution. The shallow- and deep-chamber 
definitions will therefore differ, and are considered separately. 

5.1. Shallow-chamber dejinition 
For yI;J >> 1, an appropriate length scale L is given by HPK as 

L = 2h/yp ,  

and the surface cell concentration N, (cells ~ m - ~ )  is given by 
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as yB+m (see (1.32) and (1.33)). Consequently, if we write 
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we see from (1.20) that 

The appropriateness o f f  as a definition of the Rayleigh number in the limit yP 9 1 
can also be verified directly from the governing equations. After N and C have been 
eliminated, equations (2.5a-c), with cr = 0, can be manipulated to obtain the following 
single equation for W :  

dB d ( ( dzdz 9 9--y---2ypn 

= r-kz dn ( 9+---+-pn+ YdBd Sdzdz Y S ( 1+- :)[ y z ( 3 ' + 4 y ~ n ] )  W, (5.4) dz 

where 9 = d2/dz2 - k2.  In the boundary layer a suitable scaling for z is 

y = YPZI2, (5.5) 
and, given that the horizontal lengthscale of the disturbance should also be L, the 
wavenumber should be re-scaled such that 

k = 2k/yp. (5.6) 
Then, using the boundary layer representations of the steady-state cell and oxygen 
concentrations (from HPK), we obtain 

- 2 d  4 d  9 9+--+- )+(--- { ^{ 1+YdY (1+Y)2 (1+Y)3dY Sy2p2(1+Y)' 

I )  ~ - k2 W , (5.7) - + 4 1 +  *Lzr (( [ 1 ( ')[ m- - 
~ ~ p ' ( l + Y ) ~  '+, dY2 SdY (1+Y) 

where 9 = d2/d Y2 - f f 2 ,  which indicates that the appropriate Rayleigh number for the 
suspension is indeed as given in (5.3). Figure 17(a) shows how r, varies with yP( 2 1) 
for the cases where S = i, 1,20. The behaviour of FC as yp increases is now intuitively 
reasonable, suggesting that, as the density stratification increases, the suspension 
becomes more unstable. 

Figure 17(b) shows the relationship between kC and yp. This tells us that the re-scaled 
wavelength, &, corresponding to k,, increases as the value of yp increases, and does not 
tend to a constant. Hence the initial spacing of the bioconvection patterns does depend 
significantly on the chamber depth, and is not determined solely by the characteristics 
of the boundary layer. 

5.2. Deep-chamber definition 
The definition of an alternative Rayleigh number for deep chambers follows the same 
procedure as for shallow chambers. The only difference is that we assume that the 
instability of the system is determined by the nature of the cell distribution only in the 
region above the cut-off point z = z,. 
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As before, No in the definition of Tis  replaced by Ns, which is given by (1.35), for deep 
chambers with y p  9 1, to be approximately 

In addition, the density stratification that drives the instability is confined to the region 
0 < z < z, and so for non-boundary-layer cases a more appropriate definition of the 

N, fyPaz No. (5 .8)  

Rayleigh number would be 
(5.9) 

However, when yP 9 1 we must take into account the fact that much of the variation 
in cell concentration is confined to the small boundary layer region near z = 0. The 
depth of this layer is found from (1.35)-(1.37) to be 

(5.10) 
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FIGURE 18. (a) Re-scaled Rayleigh number, FC, and (b )  corresponding re-scaled values of kc, 
corresponding to the cases where 8, y ,  and p are independently varied. Both shallow- and deep- 
chamber values are shown. The vertical dashed lines correspond to parameter values that coincide 
with the transition line. 

so an appropriate Rayleigh number for the suspension is 

(5.11) 

Note that the dependence o f f  on 6, which is required in deep-chamber cases, comes 
in via the value of a,. The deep-chamber definition of f is consistent with the shallow- 
chamber definition (5.3) as z ,  + 1. The dependence of fc on the parameter values for 
the cases considered is shown in figure 18 (a). Both shallow- and deep-chamber values 
are shown. Comparing this figure with figure 7 (a)  we see that the jump in the calculated 
value of f c ,  as one approaches the transition line from the shallow and deep chamber 
areas of parameter space, is much smaller than that found for I',, suggesting that the 
re-scaled Rayleigh number is indeed appropriate. The behaviour of the value of fc as 
the parameters 6, y and ,4 are independently varied is more consistent with the nature 
of the steady-state cell profiles for these cases. As a result, the curves where y and /3 are 
independently varied no longer possess the local minima observed in figure 7(a) .  
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By analogy with the re-scaling of k in the shallow-chamber case, we choose the deep- 
chamber re-scaling to be 

A = 2k/y/3a:. (5.12) 
The re-scaled values 6, are shown in figure 18(b). For clarity, k, is plotted on a 
logarithmic scale. The vertical dashed line marks the deepshallow transition. There is 
still a marked discontinuity, related to the discontinuous behaviour noted in figure 8. 

5.3. Relation to experimenl 
Although we have solved both the shallow- and the deep-chamber linear instability 
problems, quantitative comparisons with Kessler’s experiments (Kessler et al. 1994, 
1995; HPK) are not possible because accurate values for the upswimming parameter 
y and the depth parameter /3 (and indeed more quantitatively accurate forms for the 
dependence of the cell diffusivity, cell chemotactic function, and oxygen consumption 
rate on oxygen concentration) are not available without further more detailed 
experimental investigation into individual cell behaviour. Nevertheless, certain 
qualitative aspects of the solution to the deep-chamber problem are found to agree 
with experimental observation. By independently varying the depth parameter p, we 
find that at sufficiently large depths the fluid motion at the onset of instability consists 
of a convection cell occupying the upper unstable zone and a counter-rotating cell lying 
within the stable zone. The motion in the upper layer actually penetrates part way into 
the stable region beneath, the depth of penetration appearing to depend on the ratio 
of the cut-off distance to chamber depth and the nature of the cell stratification above 
and below the cut-off point. As a result of this fluid motion one would expect most of 
the cells originally situated in the lower zone to remain there - this behaviour is 
consistent with experimental observations, although there have been no reports of a 
counter-rotating eddy in the lower zone. As the depth parameter /3 is reduced, the 
motion of the fluid at the onset of instability is predicted to become one consisting of 
a single convection cell occupying the entire chamber. The stable region of cells will 
thus participate in the main convective motion and the inert cells will no longer remain 
in the lower zone, but will be carried upwards, once more receiving oxygen and 
becoming active. Such behaviour is also consistent with experimental observation. 

However, in most experimental demonstrations of instability (see HPK, for 
example) the first motions to be observed (from the side) consist of plumes descending 
from the cell-rich layer at the free surface. The streamlines would be concentrated in 
the plumes and in the surface layer, and not more regularly spaced as in figures 11 and 
16. The discrepancy could be a consequence of using inappropriate parameter values, 
but is more likely to be due to the neglect of the reorientation of cells by shear in the 
flow, which would cause the cells to swim in towards a descending plume, as already 
analysed for gyrotactic algae (Pedley & Kessler 1992). After some time, when the flow 
is necessarily nonlinear, the plumes plunge into the lower zone where they cause 
mixing. 

Our model predicts that immediately above the cut-off point z = z ,  the cell 
concentration and its gradient are characteristically smaller than those found below the 
cut-off point and hence small perturbations experience a significant gravitational 
restoring force in this region leading to the generation of gravity waves and hence the 
oscillatory behaviour predicted by our model for a certain range of parameter values. 
Such behaviour has yet to be observed experimentally and a further investigation is 
required. 

Quantitative comparisons with experimental results may further require an 
instability analysis of an evolving cell concentration profile, as it is likely that instability 



258 A .  J .  Hillesdon and T.  J .  Pedley 

will set in prior to the steady state being reached. Such an analysis should establish the 
time at which instability begins and its subsequent growth rate, and is an area of future 
interest . 

Furthermore, when detailed quantitative data concerning individual cell behaviour 
become available, it may prove useful to consider a more self-consistent model for the 
cell swimming velocity and cell diffusivity tensor that includes both random and 
deterministic aspects of cell motion in a probability density function for the cell 
swimming direction. It would also be necessary to include a term in the cell 
conservation equation that accounts for the orientation of the cells by shear (rheotaxis 
or gyrotaxis). This may reveal new aspects of the collective cell behaviour. 

Although we have shown that a linear instability analysis can provide a useful 
qualitative insight into the behaviour of an unstable cell distribution at the onset of 
instability it is not able to predict the initial planform of the bioconvection patterns. 
To achieve this at least a weakly nonlinear analysis is required - this is currently being 
performed. 
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